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Background

1. Linear Progremming and the Simplex Msthod

The general linear programming problem may be statad in the

following feorm:

n
(1) maximize X o5
T
Sl
aubject o %-1 aij XJS bi, i 1,-23--0. Mo

sz 0, j 1,2..-.‘ ne.

Regsarch in the fisld of linear programming vms originally directed

{ to developing general wsthods for solving this prellem. The Qevelop-
oont of the eimplex method by Dantzig D’J provided a means for solving
all such problems in a reletively efficlient and streighiforward manner.

The proocess is as followsa:

l. Jinequalities arc converted to equivalent equelities by adding
suitably defined veristlee, A so-called tablesu arranremoent is

then secured end ar initial solution obteined which may be ex-

prossed as

] o
(2) -
Y_0xm Bymop,
il
whare Py raprescris the stipvletions vactor wiLh cumponente

by , i*l, 2,...,m, and the p; are a sultnbly zclosted set of

vasis vectors,
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2. The elemonts in the ji‘h columm of the tableau may be regarded as
coefficients ¥i3 for expressing PJ in terms of the Py:

n

(3) g viy Py= Py, 3%, 2,..., n.

3 An addiliional row is loocated with elements %3 = oy where

m
(4) 23=§; yij oy » Ja1,2,c0e,n.

4. A oriterion is supplied for Judging the solutions at any stage.
1f all zj - ojare non-negative, an optimum has been achieved; if

ngt, further imprcvement is possible.

7
5. A systematic pronedure 1s provided for changing the basis and ocon-

tinuing the celculations until an optimum is achisved. Tho procedure
consiste of designeting a vootor to come into the bsgis by reference

to the 2 J = °3 and a veetor to be removed by reforsnce to the retics

x3/¥14» ¥13> 0o

Adjscent Extreme Polint Methods

Since the simplex method was evolved numerous variants and altoer-
netive procedures (such ae the dual method of Lemke [15]) heve been
devised. In common with the simplex method the procedures consigt of
movement from an oxtrome point to an adjacent extreme point of the
convex sot of solutions. The following propertiea of the solution
set are thorefore critical in all such proocedures: (1) an optimum,

1f it exists, is atteiuablo at an extrema point; (2) all optiua can
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be genernted from the oxtreme point optima. By proceeding along
adjacent extreme points it is therefore possibie to locate an optimum

if one exiete or to locate all optima, if desired. }./

LExtonsion to Non-Linear Funotionals

Initielly it was thought that these methods (which may be characterized
&3 “"adjacent extreme point methods™) were applicable only to linear funotion-
als with oonstraints given by linear inequalities. It was soon obmerved,
howwver, that problems involving non-linear functionals of the f'orm

Wk 20

n
(5) 3w Ly o % v Sk

keK

which wore to bpe minimized (subject to linear constraints) could be reduced
to an equivalent linear programming problem. -2-/ The reduction waas achieved

by introducing new variables
-'. -—
(6) X, *x 2 0

into the constreints eand into the functional. Every optimum of the original
{(ncn-linear) problenm could then be writter as ar optimum of the
linear problem. Adjacent extreme point methods cculd therefore be ussd to

locates the minimum values fci' thia particular class of convex functionele.

Clearly, then, the powsr of adjzcent extreme point rethods extended
to this class of convex funotionals. It was thought, however, that problens

involving minimization of more general classes of convex functionals -- e.g.,

1/ See Charnee [!]
g/ see [AJ
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adnirization of seml-dofinite quadratic forms ~- could not be solved by
these methods except in special cases. Although, for such types of
functicnals the optimum is always on the boundary of the solution set,
it is not necessarily located at an extreme point.

Subsequent rescarch ravealed that adjacent extrems point methods weroe
capable of further extension, Charnes and Lemke [5] noted that problems
involving minimization of seperable convex functioncls {and hence maximiza-
tion of moparable concave functionals) could be handled by these methods,
Solutions (to any deeired accuracy) could be achieved by means of piecewise
linear approximitions. Dantzig [6) showed further that this approach could
be transformed into an equivalent formmlation., A different extreme point
method —- the bounded variables technique [4] and [8] -~ could then also

be used to solve such problems,

Still further extensions were soon forthcoming, In [9] Alan Hoffman
announced thz;t the msthods of Charnes and Lemke for dealing with separable
convex functlonals had been extended to cover the general problem of mini-
mizing an arbitrary convex functional subject to linear inequalities, He
suggested, also, that this might be the limit to which the simplex method
right bo pushed in dealing with problems invelving optimization of non-
linear functionals subject to liriear ineogualities, Although full details of
Dr, Hoffman's work are not yet available, his findings fit rather naturally
into the evolution of research directed to exploring the boundaries of ad-

Jacent extreme point methods in solving linear programming protlems,
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Objectives

This paper is intended to carry these explorations a atage further.
Specifically, the objectives are as follows: One, to show that it is
rossible to extend adjecent extreme point mesthods to a much wider class of
non--linear functionals —-=- including functionals which need not be either
convex or conceve. Two, to characterize the olass of such functionnls which
can be embraced by thess wmnethods. Three; to indicate modifications in the
slmplex procedures and criteria of optimality which are . .-essary to efisot
Lhis uxtesnsion. Four, to demarcates the limits of such oxtenslions that moy
ke made and thus esteblish ths power of adjacent extreme point msthods
{ineluding the aimplox mothod) in demliny with optimization of arbitrury

functionals subject to linesar conetraints.

Definition of Looal Star Optima and Theorcm

In order for oxtreme point rtétheds to be effective (to the desired
degreo: of approximation) it is ctearly necessary for one of the following
two conditicns to hold: (1) the optima are at extreme points or (&) the
problem must be transformeblce into an equivalent one in which the correse
poading optima of the &riginal p:'®biem are at extreme points of thes new
problam. The bshavicr of the functional at points other than extirene

points is irsrelevant.

Since the issue is optimizetion in the large ihess cenditionz, thougn

nocessary, are not sufflclent. Adjacent extreme point metlheds may, when
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these conditions are fulfillod, yield only local optima. It will be con-
vonient therefore to define

A Local Star Optimum: An extreme point

solution which ;ilclds a functionsl wvalue

at least as great as can be attained at

any adjacent extreme point.
Clearly then tho following theorem is wvalid:s

Theorem: A necessary end sufficlient

condi tion thut sdjusent extrens point

methods glwys yield .n optinue is that

all local star optima shall also be
optima in the large.

Illuatrgtion

The following illustration will serve tc show what is involved and
provide & basis for subsequent dlscussion. Suppose that the objective is

to minimize the non-linear functional

(7) F (yla J2ssces ¥n )

subject to a sot cf linear constraintas. It is possibie to approximate F
to sny desired degree of accuracy by means of piecowice linear functionals,
provided F may bo decompoccd by linear transformations into a sum of funce

tions of individusl wvariables. Thus, if F can be writien es

(8) P
2 £ (=xy)
ixl
where n
Xy = 3 Bk ¥k
ka1
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than the £y (and iience F) can be approximated (to any desired degree) by

plecewise linear functionals.

Consider, for example, the function £(x) sketched in Flgure I

(=)

—{(x)

FIGURE I

PIECENISSE LINMAR APPROXIMATION
TO CONCAVE AN'D CONVEX FUNCTION

3/

wnich is convex over certain domainsg snd cor.zve over others.~ The plecewlise
3 o~

linear sppreximstion 18 given by f (x). Tho X's represont the slopes of

the approzimaling lines and Lhe a's represent iio initial and toerminal points

of each succesgsive segment.

:_5[ Continuify is not essential.
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Numerous convenient devices are available for securing the desired

degree of approximation. The following procedure rrovides an example
aL

wvhen { 1s differentiable, The value i 15 plotted against x, as in
Figure II, The area under % my be used to represent f(x) and the

histogram used to represent Tx). By choosing appropriate

L3
aj's (i=1,2,...,n) the absolute difference l&)ﬁ;‘{-‘é}-\ may be made

as smll as desired and a sultable approximtion thus obtained,

df
dx af
dx

Z

Z

.1 .'2 lj ﬂ.ﬁ ﬂ.5 ﬂ.ﬁ

N

—L

FIGUHE II
HISTOGRAM «PPROXIMATION TO f£(x)
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dnnl  tically this appreximetion may be written es follows,

(9) 0 . x =a
k; (x-e3) . omySx £ ag
f‘\(x):: kK (x-a3) 4-(kyp - kl)(x—nz) ,» 82Sx S ag

ky (x-ul)+(k2 = k1)(x~a2)+ (kz-X5)(x-az), az xS 8,

@ o & 2 s+ e+ & T s + & s » ® s e s & & &8 e & s s s = w

.kl (x-ay) ¥ (k2 - kl)(x-az)-’- eo o +(kg-kg)(x-ag), ag £x.

An ul ternative expression is
.m .- '
(10) If‘\(x) = J:):: (kj - kj—-l) (x - aj), By = X Sa

where ko= 0.

Satting
xt - x7= x -~ n
i i i
whore
+ —
X . %X 20
(11) i 1 i
x{"' x{ =20,

1=1,2,...,6

the sxpression (10) may be written as,

6
(%) = ‘3—: (kg l’j-»l) (xJ - x5, aps xS a o
(12)
6 {
::):____ \kj'kj 14 74
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Yodificatlons of Simplerx Criteria and Procedurea

As the example of the preceding section i1llustrates the functional
F may be decomposed by linear transformations into a sum of functionale
each involving only a single variable. To each such functional a corresponding
(approximating) linear functional may be obtained which is to be optimized

in an onlarred domaln involving additionel linear eguations and specified

gquoadrabic conditions in non-negalive variables.

The linear functionals are of the form

(13) ., o .
Tylm) = D Gegg = Kyaey)) =T,

=]l

331,2,.--,11{'

The additional 1linear equations which musl then be

criginal set of rostrictions is

adjoined to the

x -(~+ ~ x31) ~ 8
J 31 J1 = 851
+ -
(1) (xj2 = *52) = e
x5 w(xsh -« xiZ) = &
J Jn Jns = Fin
Finally, the followling guadratic conditions must bto satisfied

+ —
le le =, (0]
(15) x;{g Xj—é =0

+4 -
xjn XJn = (0]
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The ocordinates at exiremn points, howevor, are coefficlernts of
4

linsarly independent sets of vootora.~/ But as the expressions in (14)
vactor coefficients of

clearly show tho/ xJ; end xj5 are linearl; dependent. lience, ns long

as moveaent is aleng oxtrems points only,oi'ther x;a' = 0 or =0 wo

Xj-s.
that tha quadratic conditions {15) are automatically satisfied and the
representation (13) of the functional is valid., It ie therefore nacessary

to stipulate that thes mothod of calculation utilizes oxtreme peints only.

If maxinization is bhoing urdertaken and if the functional is convex
ovar cortain ranges the ordinary 24 - 3 improvement criteria must te
modified because of the posslble appearerice of infinite values for the
f‘unctione.lé/. To fix idees consider & problem involving a non-linear

functional which has been reduced to the form

nin?
oax. ¥ ej )‘j
J=1

(16) subjeot to

n
(=) Y o8 Ny =b; o, 11,2,...,m
T 1 J
J=1
r:?'n' “ [
(0} s— ¥ No= &, | 1=1,2,...,m
B 4-m? E g ] 2
d=r (L) ] J 4m
(o) Xj o
:,3/ ces (3}
.)/ Jee rule 4, sscliocn 1. Similar remarks apply if mininization

is beiny undertaken snd the ftunctional is concave ,8r certain
rangee,

pam——
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where the restrictions (a) are associated with the original problem and
the restrictions (b) are adjoined (as in the illustration of the preced-
ing section) in the process of sacuring the spproximation. Note: (1)
that the object in the approximation is to obtain a value which agrees
with £3 (x4) on the oxtreme points, (2) that different numbera of
subdivisions may bs used for each fj (XJ))and (3) so long as movement is
restricted to extreme points the quadratic couaition is automatically

satisfied and may thus he regarded as redundant.

In more compact vector notation, (16) may be reexprassed au

n+n'
(17) mn.x.: oy b
33

subject to

=R E)IRTER =Nt VI ()
ijo

are
where the P's, D's and G's, (as well as O)’\appropriately defined column

vectors of m and m' rows respectively.

Evidently any lincarl; incependent set of m PJ'e must be associated
with a set of m' linearl; independent GJH if movemont is to be restricted
to axtrems points. Hence rule 5 of the simplex routine which stipulates

replacement of a Pj by a Py teo provide a succeedins basis must be modified
1)
so that a [ ¥ can only be replaced by a ( k ) and,{g\ hy a {g \
D Dy Vi VK
loe optimlivy siilaocion maf than He aadifiadl %an ¢ gt s 2 0 a2~ al) per-

©

Ard8iuis roplalenzius,
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Dy applyias these rulss to the axtsaded set, movoient is restricted
to extrems polmts of the orizinal set, Henoe, an optimm vhich is attained
for the enlarged proble: of employing these altsred procedures anxd criteria
415 also an optimm for the original prodlem, In generel; only a local star
optimm is guaranteed, l/hen a local star optimm £s also an optimm in the
large the proocedures and eriteria outlined above vill suffice to locate this
point Arrespective of the mon=linear charasteristics of the functiomal,

Eurther Extensions

The procedure is capablo of further extension in particular applica-
tions, Clearly all cases in which local star optima are optima in the large
are comprehended by the above rules and criteria. In other cases it is
possihls to employ these new criteria to reach wvarious local star optima
by starting at widely separated extrems points, It may then bs possible
to establish that an optimm optimorum has been attained in the process.

The ability to use adjacent extreme point methods (such as the
simplex procedure) as a reneral procedure for solving all such problems
is patently dependent on thc developmant of systematic and efficient msans
for travercing local star optima, At present no such general techmiques
are available, The procedure cutlined above is, however, amenable to
heuristic employment when a priori considerations do not make it apparent
that a local star optimm is also an optirmm in the large. On attaining
a local stay extremmum it may be possible to estahlish directly that it is
also an optimm optimorum. The current lack of pgeneral and efficient traw-
ersal techniques demarcates, for the present, the non-linear power of adjacont
extrems point methods of linsar programming,




(1]

(2]

(31

(4]

51

[61

17]

(8]

[9)

(10}

BIBLICGRAPHY

Charnes, A, ‘' Degeneracy and Optimality in linear Progruosming,'
Eceonometrica XX, 2,

» W, W, Cooper aund R, Ferguson. " Optimal Estimation of
Fxecutive Compensation by linear Programming,." Management
Science Vol, 1, Ko, 2

Charnes, A.,. W- W. Cooper and A, Henderson, Aﬂw
Programming (New York: John Wiley and Sons. Inc,, 1953

Charnes, A. amd C, E. Lerke, ' Computational Theory of Linear Pro-
gramming I: The 'Bounded Variables' Problem.! ONR Research
Memorundum No. 10, (Pittsburgh: Graduate School of Industrial
Administration. Carnegie Institute of Technology. Jan., 1954)

s

o e—ma= . 1" Minimization of Non-Linear Separable Convex Functionals,'!

Nayal Research Logistics Quarterly. Vol. 1, No. 4.

Centziga 0o Boy ' Developments in lineayr Programming.'
Mapagement Scjence (forthcoming)

Dantsig,. G, B. . ' Maximization of a Linear Function of Variables
Subject to Linear Inequalities, ®® Acti

Production and Allocation, T. C. Koopmans, editor,

Tanteigs Go 8o, " Upper- Bounds, Secondary Constraints
and Block Triangularity in ILinear Programming.' Ecopnopetrica
Yol., 23, No, 2

Hoffman, A.J,, Quarterly Report, July through September, 1954
(Washington: National Bureau of Standards)

lemke, C., E.,. " The Dual Method of Solving the Linear Progremming
Problem." Na Research LT IS . Vols 1, Now 1,
March, 1954

. g




